A CONVENIENT METHOD FOR THE SYNTHESIS OF HOMOALLYL ALCOHOL USING A NEW DESULFONYLATION METHOD

Hiroshi KOTAKE*, Taku YAMAMOTO, and Hideki KINOSHITA

Department of Chemistry, Faculty of Science, Kanazawa University, Kanazawa 920

2-Tosyl homoallyl alcohol obtained by the reaction of allylic p-tolyl sulfone with aldehyde was found to be easily desulfonylated to homoallyl alcohol by the use of $Pd(PPh_3)_4$ as a catalyst and hydride ion as a nucleophile, without any side reactions.

Allylic sulfones have been proven to be very useful intermediates for carbon-carbon bond formation via the sulfur-stabilized carbanions and effectively used in synthetic chemistry 1).

In connection with our continued interest to extend the synthetic utility of $\operatorname{sulfones}^2$, we now investigated the reaction of allylic p-tolyl $\operatorname{sulfones}^3$, which were easily obtained from allyl esters and sodium p-tolylsulfinate in the presence of $\operatorname{Pd}(\operatorname{PPh}_3)_4$, with a variety of aldehydes and found that treatment of the lithium salt of allylic p-tolyl sulfone (1) with aldehydes afforded exclusively the regionselective product, 2-tosyl homoallyl alcohols (2) in good yields as shown in Table 1.

The reaction was carried out as follows: to a solution of cinnamy1 p-toly1 sulfone(272 mg, 1 mmo1) in dry THF(5 ml) was added a hexane solution of n-BuLi(1.1 eq.) over 5 min at -78°C under N_2 . After stirring for 1 h at -78°C a solution of 1-nonanal(156 mg, 1.1 mmo1) in dry THF(3 ml) was added to it. The temperature was gradually raised up to -25°C over a period of 5 h. Then, the reaction mixture was worked up and a crude product was purified by preparative TLC(hexane:AcOEt=5:1 V/V) to give the desired product(2b) in 90 % yield.

Table 1. The Reaction of Allyl p-Tolyl Sulfones with Aldehydes

R ¹	R ²	R ³	R ⁴	Temp(°C)	Time(hr)	Yield(2a-e) ⁶⁾ (%)	
Н	Ph	Н	Ph	- 78 40	5-6	84 (2a)	
Н	Ph	Н	$CH_3(CH_2)_7$	-7825	5	90 (2b)	
Н	Н	PhCH ₂	Н	- 78 - 0	3	82 (2c)	
Н	Ph	PhCH ₂	Н	- 78-0	3	86 (2d)	
CH ₃	CH ₃	PhCH ₂	Н	-7820	4	85 (2e)	

Table 2. Preparation of Homoallyl Alcohols

Run	Tosyl alcohol	NaBH ₄	NaBH ₄ Reaction condition ^{a)}		Product	V: 11(0)
	(2a-e)	(eq.)	Temp(°C)	Time(hr)	(3a-e) ⁷⁾	Yield(%)
1	Ph Ts Ph OH OH OH	7.3	- 35 - 0	6	Ph OH Ph	75
2	$^{\text{Ph}}$ $^{\text{OH}}$ $^{\text{CH}_2)_7\text{CH}_3}$	(2b) 7.3	r.t.	0.5	Ph OH (CH ₂	81) ₇ CH ₃
3	Ph Ts OH (2c)	7.3	0	1	PhOH	91
4	Ph Ts OH (2d)	5.5	0	2	Ph OH	91
5	Ts OH (2e)	14.6	20	5	$\nearrow \nearrow$ Ph OH	72

a) The mixed solution of THF-i-PrOH(2:1 v/v) was used as solvent except for run 5, in which THF-EtOH-i-PrOH(5:2:2 v/v) was used.

Next, we tried to convert the resulting tosyl alcohols(2a-e) to the corresponding homoallyl alcohols(3) using a reagent such as $Al(Hg)^4$, $Na(Hg)^5$ or $Li-EtNH_2^8$. Unfortunately, in every case these desulfonylation procedures were accompanied with migration of double bond or retroaldol reaction.

Recently, Trost et al. reported⁹⁾ that treatment of the ally1 sulfone with palladium(0) complex in the presence of nucleophile led to a smooth alkylation. Apparently the sulfonyl group serves as leaving group in this nucleophilic displacement. This fact suggests that this reaction may be used as a desulfony-lation reaction if hydride ion is used as a nucleophile. Based on this assumption, we investigated the conditions and finally found a new effective desulfony-lation of ally1 sulfones without any migration of double bond¹⁰⁾ or retroaldo1 reaction by the use of NaBH₄ as a hydride donor.

A typical experimental procedure for the detosylation of tosyl alcohol is as follows: to a mixed solution of 2-benzyl-4-phenyl-2-tosyl-3-buten-1-ol(152 mg, 0.388 mmol)(2d) and NaBH4(21 mg, 5.5 eq.) in THF(3 ml) and isopropyl alcohol(2 ml) was added dropwise a solution of $Pd(PPh_3)_4(21 mg, 5 mol\%)$ in THF(1 ml) at 0°C under N2. After stirring was continued for 2 h at 0°C, the reaction mixture was quenched with KCN followed by extraction with ether. The ether extract was dried over Na_2SO_4 and evaporated to dryness in vacuo. The resulting residue was subjected to preparative TLC(silica gel, hexane-ethyl acetate=5:1) to give β -benzyl- δ -phenylhomoallyl alcohol(2-benzyl-4-phenyl-3-buten-1-ol) in 91 % yield as a colorless oil. Various types of homoallyl alcohol were prepared by this method in good yields as shown in Table 2.

References

- P. A. Greico and Y. Masaki, J. Org. Chem., 39, 2135 (1974); B. Lythgoe and
 I. Waterhouse, Tetrahedron Lett., 1978, 2625; D. Savoia, C. Trombini and
 A. Umani-Ronchi, J. Chem. Soc., Perkin Trans. 1, 1977, 123.
- 2) H. Kotake, K. Inomata, Y. Murata, H. Kinoshita and M. Katsuragawa, Chem. Lett., 1976, 1073; H. Kotake, K. Inomata and M. Sumita, Chem. Lett., 1978, 717; K. Inomata, H. Kinoshita, H. Takemoto, Y. Murata and H. Kotake, Bull. Chem. Soc. Jpn. 51, 3341 (1978); K. Inomata, Y. Nakayama, M. Tsutsumi and H. Kotake, Heterocycles, 12, 1467 (1979) and references cited therein; H. Kotake, K. Inomata, H. Kinoshita, Y. Sakamoto and Y. Kaneto, Bull. Chem. Soc. Jpn., 53, 3027 (1980).

- 3) K. Inomata, T. Yamamoto and H. Kotake, Chem. Lett., 1981, 1357.
- 4) E. J. Corey and M. Chaykovsky, J. Am. Chem. Soc., <u>86</u>, 1639 (1964); K. Kondo and D. Tunemoto, Tetrahedron Lett., <u>1975</u>, 1397.
- 5) G. H. Posner and D. H. Brunelle, J. Org. Chem., 38, 2746 (1973); M. Julia and B. Badet, Bull. Soc. Chim. Fr., 1975, 1363; B. M. Trost, L. Weber,
 P. Strege, T. J. Fullerton and T. J. Dietsch, J. Am. Chem. Soc., 100, 3426 (1978).
- 6) Compounds (2a-e) have been fully characterized by spectral means and elemental analyses.

<u>2a</u>: Mp 138-145°C; IR (KBr) 3490, 1590, 1275, 1125, 968 cm⁻¹; NMR (CDC1₃) δ 2.36 (s, 3H), 3.41-4.55 (m, 2H), 5.16-6.53 (m, 3H), 6.75-7.73 (m, 14H); Found: C, 72.80; H, 5.92%. Calcd for $C_{23}H_{22}O_3S$: C, 72.99; H, 5.88%.

<u>2b</u>: Mp 97-99.5°C; IR (KBr) 3560, 1590, 1290, 1140, 970 cm⁻¹; NMR (CDC1₃) δ 0.75-

1.63 (m, 17H), 2.38 (s, 3H), 3.03 (d, J=3 Hz, 1H), 3.42-3.60 (m, 1H), 4.27-4.62 (bm, 1H), 5.88-6.52 (m, 2H), 7.08-7.23 (m, 7H), 7.61 (d, J=8 Hz, 2H);

Found: C, 72.52; H, 8.37%. Calcd for C₂₅H₃₄O₃S: C, 72.42; H, 8.27%.

 $\underline{2c}$: Mp 112-114°C; IR (KBr) 3540, 1590, 1410, 1275, 1140, 930 cm⁻¹; NMR (CDC1₃)

 δ 2.40 (s, 3H), 2.74-3.92 (m, 5H), 4.83 (d, J=17.2 Hz, 1H), 5.29 (d, J=10.8 Hz,

1H), 5.72 (q, J=10.8 and 17.2 Hz, 1H), 6.96-7.23 (m, 7H), 7.59 (d, J=8 Hz, 2H);

Found: C, 68.27; H, 6.29%. Calcd for $C_{18}H_{20}O_3S$: C, 68.32; H, 6.37%.

 $\underline{2d}$; Mp 158-159°C; IR (KBr) 3530, 1585, 1280, 1130, 1010, 926 cm⁻¹; NMR (CDC1₃)

6 2.33 (s, 3H), 3.09-4.10 (m, 5H), 5.92 (s, 2H), 6.93-7.15 (m, 12H), 7.54

(d, J=8 Hz, 2H); Found: C, 73.75; H, 6.13%. Calcd for $C_{24}H_{24}O_3S$: C, 73.44; H, 6.16%.

<u>2e</u>: Mp 128-130°C; IR (KBr) 3540, 1590, 1270, 1120, 1025, 810 cm⁻¹; NMR (CDC1₃)

 $\pmb{\delta}$ 1.40 (s, 3H), 1.63 (s, 3H), 2.39 (s, 3H), 3.09-4.06 (m, 5H), 4.71 (bs, 1H),

7.00-7.26 (m, 7H), 7.60 (d, J=8 Hz, 2H); Found: C, 69.44; H, 6.92%. Calcd for $C_{20}H_{24}O_3S$: C, 69.75; H, 7.02%.

- 7) Compounds (3a-e) have been also characterized by spectral means and elemental analyses. 3a and 3b were crystalline compounds (Mp 86-88° and 50-51.5°C).
- 8) P. A. Griecs and N. Minowa, J. Org. Chem., <u>39</u>, 2135 (1974); B. M. Trost, L. Weber, P. Strege, T. J. Fullerton and T. J. Dietsch, J. Am. Chem. Soc., <u>100</u>, 3426 (1978).
- 9) B. M. Trost, N. R. Schmuff and M. J. Miller, J. Am. Chem. Soc., <u>102</u>, 5979 (1980). 10)Y. Ueno, S. Aoki and M. Okawara, J. Am. Chem. Soc., <u>101</u>, 5414 (1979).